
Approximate Integration Formulas of Degree 3 
for Simplexes 

By A. H. Stroud 

1. Introduction. Here we consider approximate integration formulas of the form 
N 

J * f(xl * xn,) dxl ... dx. Ai f(pi) 
Sn 

where Sn is an n-dimensional simplex (a triangle for n = 2; a tetrahedron for n = 3). 
The Ai are constants and the pi = (Pil I Pi2, ... , pi,,) are points in the space. 
The formulas we consider all have degree 3, that is they are exact whenever f is a 
polynomial, in the n variables, of degree ?. 3. 

We show how to obtain such formulas in which all the Ai are equal and which 
contain N = n(n + 1) points. This can be done for all n > 2. For 2 ? n ? 8 such 
formulas exist with all the points interior to Sn . For n > 9, however, the formulas 
have the undesirable feature that all the points are exterior to S, . 

Other formulas of degree 3 with unequal coefficients are known for Sn, . Hammer 
and Stroud [1] give a formula using n + 2 points and Stroud [3] gives a formula 
with 2n + 3 points. By the method described in [4] formulas of degree 3 can be 
constructed using 2' points. Since the only previously known formulas, with all 
positive coefficients, of degree 3 for Sn were the 2' point formulas, the ones given 
here become the formulas with the fewest points with this property (for n ? 5). 
(The (n + 2)-point formula has one negative coefficient for n > 2; the (2n + 3)- 
point formula has one negative coefficient for n > 4. Formulas of degree 3 are 
known for the n-dimensional cube and sphere which have 2n points with equal 
coefficients [2].) 

To develop the formulas below we use the special simplex Sn with vertices 

(0,0,0, 1)... 

For this simplex the mlonomial integrals are f...fx~1....x ....dx 

(n + a, + + an)V! 
S, 

2. The Triangle. Before discussing higher values of n, n > 3, we first discuss 
the somewhat special case n = 2. 

We wish to construct an approximate integration formula of degree 3 for S2 
with 6 points in which the coefficients Ai are equal: 
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A,= A2 = =A6=A. 

We will seek such a formula using the following points 

(VI, V2), ( 1 , V3), (V2, V3), 

(V2, V1), (V3 , V1), (V3 , V2), 

where 

V1 + V2 + V3 1, 0 _V? 1, i = 1, 2, 3. 

It should be noted that this set of points maps onto itself under any linear trans- 
formation of S2 onto itself. 

If these points are to form the desired integration formula the following equa- 
tions must be satisfied: 

(1) 6A=- = dx, 
2 J2 

(2) 2A[vl+ V2 + V3] = = xi dx, 

(3) 2A[Vp2 + V22 + V32] = 2= xi2 dx, 

(4) 2A[vi V2 + VI V3 + V2P3] = 2= xiX2 dx, 

(5) 2A[v,3 + V2 + V33] = 16= Xi dx, 

(6) A[V2 2 + V1 V22 + v2V3 + Vl V32 + V22V3 + V2P3] = 120 = xi2xj dx. 

Here i,j = 1, 2 and i 5 j. We must then have 

A= 

(7) Vl + V2 + V3 - 1, 

(8) V1V2 + V1V3 + V2V3 - 4, 

(9) 1V2V3 - 60 

This last equation follows from 

( Vi) - 3 Z vi2Vj- vi3 = 1-3( i) - = = 6P1v2v3 

It is not difficult to show that if equations (7), (8) and (9) are satisfied then 
(3), (5) and (6) are also satisfied. For example, to verify (6): 

Z vi E vivj - 3vlv2V3 = I4 -60- Z vi vj . 

This shows that vi, V2, v3 must be the zeros of 

P3(x) _ - x2 + 4X - 

These zeros are irrational; their approximate values will be given in the next sec- 
tion. 
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3. Higher n. We now seek an approximate integration formula for Sn , n > 3, 
with equal coefficients by selecting a point 

V - ( Vl X V2, Vn ) 

in the simplex and taking, together with this point, the set F of all points v maps 
into under the symmetric group Gn of all linear transformations of Sn onto itself. 
Since Gn contains (n + 1) ! transformations the set F contains (n + 1)! points 
(including v). This is true if all the coordinates vi , V2, , vn are distinct; if k of 
the vi are equal then F contains (n + 1) !/k! points. 

At first we assume that all the vi, i = 1, 2, * , n, are distinct, but later 
we will choose some of them to be equal. 

Another way to describe the set of points F is to take real numbers vi, V2, 

vn+1 for which 

Vl + V2 + + Vn+1= 

and take as the points in F points 

(Vl V2 *** Vn-2 Vn-1 Vn) 

(Vl V2 *** Vn-2 Vn-1 Vn+1) 

(VI V2 X***XVn-2 XVn X Vn +1 ) 

(Vl V3 X*** Vn-1 Vn X Vn+l) 

V2, V3 Vn-1, Vn, Vn+l) 

together with all points which can be obtained from any one of these by all pos- 
sible permutations of its coordinates. That is each of the n + 1 points give rise to 
n! points for a total of (n + 1)!. 

If the points in F are to be an integration formula of degree 3 for S, in which 
the coefficients are all equal, then the following seven equations must be satisfied: 

(10) (n + 1)! A = 
I 

= Idx, 
ni ns 

(11) n! A+[v + V2 + + Vn+1] = x41)! f8|Xidx, 

(12) n! A[vP2 ? v2 + + vn+1] = ( + 2)1 = 

(13) 2(n - 1)! A[v1v2 + VlV3 + + VnVn+] =(n+2) f xi xj dx, 

(14) n! A[v13 + v2 + + Vn+1] = (n + 3)! f xi dx, 

(n- 1>t A[v12v2 + VI +2 + V +3 ? * + Vn Vn+i + Vn V n+1] 

(15) 2 fx 2 

(n + 3)! j 
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6(n -2)! A[vi V2 V3 + Vl V2 V4 + + Vn-1 Vn Vn+1] 

(16)1 r 
(n + 3)! = fxixixkdx. 

Then A = 1/[n!(n + 1)!] and to solve the remainder of the equations for the 
vi we seek these to satisfy (11), (13) and (16), that is 

V1 + V2 + * ? * n+1 = 1 

V1 V2 + V1 V3 + T+ Vnn+= 2(n ?2)' 

n(n - 1) 
V1 V2 V3 + ***+ Vn-1 Vn Vn+1 = n( 

- 

6(n + 2)(n + 3) 

If these equations are satisfied then, as for n = 2, it is easy to verify that (12), 
(14) and (15) are also satisfied. 

This shows that the vi, i = 1, *, n + 1, must be the zeros of a polynomial 

Pf+l?(x) xn?- X ? 2(n + 2) 
x 

n(n - 1) 
xn-2 + k Xn-3+ + klx + k 

6(n +2) (n +3) ?k 3 ?k ? o 

We now seek a polynomial of this type with all real zeros with the property 
that n - 1 of the zeros are equal. If Pn+l(x) is to have a zero v1 of multiplicity 
n - 1 then vi must also be a zero of 

(17) p(rn-2) (X) = (n + 1 )X3 - 3X2 + 3 x n+1 ~~~+ 2 (n?+2) (n +3) 

and then 

Pn+l(x) = (x- Vl)n(x - bx + c), 

b =1 - (n -)vi, 

C 
n __ (n - 1)vl + n(n -1) 2 

c=2(n + 2)-n )v + 2 . 

Let vn, Vn+1 denote the zeros of X2 - bx + c. We can now construct formulas 
for various values of n. In principle for each n there should be 3 such formulas, one 
corresponding to each zero of (17). Since we will not admit points with complex 
coordinates this will be true only if v1 and the corresponding Vn , Vn+j are real. 

In Table 1 we tabulate these real solutions for certain n. Equation (17) always 
has 3 real zeros, but the largest of these always gives complex values for vn, Vn+1 . 
IFor n ? 9 the smallest zero of (17) also gives complex vn, vnl?i. For 3 < n < 8 
there are 2 real solutions and for 5 < n < 8 one of these gives a formula for Sn 
with all points exterior to Sn (since vn is negative). For n ? 9 the single solution 
also is exterior to Sn 

We will not carry out proofs, for all large n, of these statements about the be- 
havior of the three possible solutions. We have verified, by computation, that they 
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TABLE 1 

Coordinates of Points in Approximate Integration Formulas 

Vl Vn Vn+1 

2 0.1090390091 0.2319333686 0.6590276224 
3 0.09484726491 0.2412769968 0.5690284733 

0.1881284504 0.05236466588 0.5713784333 
4 0.08413783241 0.2460180205 0.5015684822 

0.1582718214 0.01736377592 0.5078207600 
5 0.07573830688 0.2489442226 0.4481025499 

0.1366074267 -0.005814213043 0.4593845062 
6 0.06895619726 0.2515528295 0.4036661842 

0.1201666155 -0.02192591378 0.4210928365 
7 0.06335425440 0.2550852934 0.3647891803 

0.1072617271 -0.03352878861 0.3899584259 
8 0.05864185796 0.2618241841 0.3276828101 

0.09686195317 -0.04210939636 0.3640757242 
9 0.08830191983 -0.04858472329 0.3421693647 

10 0.08113284981 -0.05354757701 0.3233519287 
20 0.04478490125 -0.06983035166 0.2189172279 
50 0.01910896646 -0.06445758604 0.1281182294 

100 0.009772078935 -0.05308566241 0.08564984787 

are true for n ? 1000. Proofs could be given based on estimates for the zeros of 
(17). For example, the middle zero of (17) lies in the interval (n + 3)-' < x < 
(n + 2)-' and in this interval c < 0 (for large n) which means b' - 4c > 0 and 
Vn < 0. 

The values for n = 2 are those found in the previous section. However, if n = 2 
is substituted in (17) and in the expressions for b and c we arrive at the same results. 

4. Relationship to Orthogonal Polynomials. We will show that the n(n + 1) 
points in any one of the formulas described above can be considered as the complete 
solution of a certain system of n polynomial equations which have a certain or- 
thogonality property. 

First consider the case n = 2. The 6 points in the constructed formula are the 
solutioin of the simultaneous equations 

Pi (X1) (X1 - V1) (Xl - V2) (Xl - V3) = 0, 

P2(Xl, X2) Xl + X2 + X1X2 - Xl - X2 + 4 = 0. 

(The easiest way to show that this is true is to assume a P2 with this property can 
be found of the form 

P2(xl, X2) = a(xi2 + X22) + bxlx2 + c(xl + X2) + 14 

Then we must have 

P2( V1 V2) = P2(1 ), V3) = P2(V2 , V3) = 0 
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and using equations (7), (8), (9) it can be shown that P2 has coefficients a = b = 
-c = 1.) Since the points in the formula are zeros of both Pi and P2 it is immedi- 
ately obvious that these polynomials satisfy the orthogonality conditions 

fPI(xi) dx = 0, 
2 

P2(X1, X2)Q(xl , X2) dx = 0 
S2 

where Q is any polynomial of degree zero or one. 
In a similar way we can show that for n = 3 the points in each of the two dis- 

tinct formulas are the solution of a system of the form 

Pi(Xi) = 0, 

P2 (X1, X2) = 0, 

P3 (Xl X2, X3) = 0 

where P1, P2 have degree 3 and P3 has degree 2. To do this we take polynomials 
of the form 

Pl(X1) = (X1 - PI) (Xl - V3) (Xl - V4), 

P2(xl, X2) = (X2 - v1)[a2(X12 + X22) + b2X1X2 + C2(Xl + X2) + 11, 

P3(X1 I X2 I X3) = a3(X12 + X22 + X32) + b3(Xlx2 + X1X3 + X2X3) + C3(X1 + X2 + X3) + 1 

and calculate the unknown coefficients in P2 and P3 by the requirements 

PVlP, V3) = P2( V1, P4) = P2(V3, P4) = 0, 

P3 (Vl Vl , V3) = P3(v1 , VI I V4) = P3(V, V3 , V4) = O. 

A proof that the 12 points in the integration formula satisfy the resulting system of 
equations, and that there are no other solutions, can be made by simply enumerat- 
ing all possible solutions. As before, it is obvious that P1 and P2 are orthogonal to 
any polynomial of degree zero and that P3 is orthogonal to any polynomial of degree 
zero or one. 

The generalization to arbitrary n is now almost obvious. The n(n + 1) points 
in the constructed formula are the solution of a system 

Pi(xi) = 0, 

P2 (Xl, X2) = 0, 

Pn-1 (Xl X * * * , Xn-1) = 0, 

P7,(Xl, X2 , ... , xn) = 0, 

where P1, ***, Pn-1 have degree 3 and Pn has degree 2. These polynomials are 
constructed as follows: 
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Pi(xi) = (x1 - Pi) (xi - v.) (xi - v.+,) 

- k k k - 

Pk(Xl, * * , Xk) = (Xk - P1) ak E Xi + bk E Xi Xi + Ck E xi + 
t =1 i .j=l t =1 

k = 2,3, , n-1, 
n n n 

Pn(Xi *** Xn) = an EXi2 + bn E Xi6 Xi + Cn E Xi +1 
i=1 i,j=1 i=1 

where the unknown coefficients ak, bk, Ck, k = 2, , n are found by the require- 
ments that 

Pk(1, * *,l n=) =Pk(7)1, * ni1) =Pk(V1, * V1 , Vn , Vn+1) =0, 

k= 2,3, ,n. 

The proof can be made by induction on n. Assuming that the form of the solu- 
tion is correct for order n - 1, then all possible solutions of the nth order system 
can also be enumerated (which we will not do) and thus it can be shown that the 
result is also true for order n. P1, * , Pn-l are orthogonal to any polynomial of 
degree zero and Pn is orthogonal to any polynomial of degree zero or one. 

5. Concluding Remarks. As a simple example of the application of these inte- 
gration formulas let us evaluate numerically the integral 

(18) (1 + X + X2 + X3)4 dx = 0.0208333333. 
S3 

Here n = 3 and in addition to the two 12-point formulas given in Table 1 above 
we also use for comparison the formulas of degree 3 given in [1], [3] and [4] men- 
tioned in the introduction. The results are summarized below: 

Approximnation to (18) 
First formula of Table 1. 0.0206178943 
Second formula of Table 1. 0.0206308008 
Formula of [1], 5 points. 0.0205151884 
Formula of [3], 8 points. 0.0218716667 
Formula of [4], 8 points. 0.0206454784 

It should be noted that the third degree formula of [3] involves, in princi- 
ple, 2n + 3 = 9 points for n = 3. For n = 3, however, one of the coefficients re- 

duces to zero so, in effect, there are only 8 points. 
In a certain sense the n(n + 1)-point formulas developed here are a generaliza- 

tion of the classical Gaussian 2-point formula of degree 3 for a one-dimensional 
interval. The most obvious similarity between these formulas is that in each case 
the formula has all equal coefficients and in each case the formula is mapped onto 
itself under all linear transformations of the region onto itself. The n(n + 1)- 
point formulas, however, do not have the property of having a minimal number of 
points as is true of the Gaussian formula. 
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